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Abstract

This paper presents analysis of the curvature sensing method and the associated wavefront r(xxmstruction
problem for adaptive optics applications to telescopes with large aperture. The analysis includes characteri-
zations of the nonlinear, diffraction, and noise effects for curvature sensing. A comparison of reconstruction
performance for curvature and slope sensing is also presented. Simulations based on the optical prescription
of the Kcck telescope are used to verify the analysis.
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0. Introduction. Adaptive optics systems are based on sampling the wavefront entering the telescope
pupil, and then quickly restoring the aberrated wave to its unabcrrated  planar state by a corrective optical
element. A key component of this process is the measurement and reconstruction of the wave front. Because
wavefront measurement devices do not directly measure the phase, but typically some derivative of it, the
estimation (or reconstruction) of the phase from these relative measurements is necesary.  Many successful
AO systems have already been developed using slope measurements of the wavefront obtained by Shack-
Hartmann or shearing interferometry.  More recently, successful implementations of low order AO systems
employing the method of curvature sensing have been made [12]. This paper presents analysis of the curvature
sensing method and the associated wavefront reconstruction problem with particular attention towards
application to large aperture telescopes.

Methods of curvature sensing using intensity measurements to approximate the I.aplacian are described
in the papers [6], [1 O], [11], [16], [17]. Here we will analyze some of the properties of the curvature sensing
scheme with particular emphasis on the method as devised by Roddier and coworkers [11]. The analysis
presented includes nonlinear, diffraction, and nciise effects fo; curvature sensing. We also briefly discuss
its viability as a method for estimating the wavcfront  normal derivative. The ability to perform this latter
function is important from the perspective of the sensor operating as a total stand-alone measurement device
since the reconstruction of the wavefront from curvature measurements also requires measurements of the
normal derivative. Having both the Lap]acian and normal derivative on the boundary is required for posing
the standard Neumann problem that arises in connection with wavefront reconstruction. A comparison of
reconstruction performance for curvature and slope sensing is presented.

Briefly, the method of curvature sensing relics on forming a normalized difference of intensities in two “
planes symmetrically displaced from the focal plane. Using a I%snel  propagation analysis, and with several
approximations, including “seeing” condition assumptions, the irradiance  transport equation is derived. The
irradiance  transport equation is essentially a hydrodynamic model describing the evolution of the intensity of
the wavcfront  in the direction of propagation. The derivative of the intensity in the direction of propagation
is shown to be proportional to the Laplacian of the wavefront surface. Thus intensity measurements in
displaced planes normal to the propagation provide a finite difference approximation to the differential
intensity, and hence to the wavefront Laplacian.

Within a geometric model of intensity propagation [2] it is shown that the nonlincarities  of the sensor
can be characterized through the Gausian  curvature of the wavefront [8]. The scale of this nonlinearity
grows with the sensitivity of the measurement. An expresion  characterizing the balance between the sensor
nonlinearity and noise characteristics is derived. It is shown that diffraction efkcts can be incorporated via
a convolution of the curvature signal with certain impulse response functions of the telescope. For large
aperture systems these effects are relative] y benign, although simulation and analysis indicate that they do
have impact in the neighborhood of obscurations and and at the pupil edges. The analysis of radl~  deri~tive
measurements obtained by intensity measurements indicates that it is susceptible to nordinearities  and noise
effects. This measurement is concluded to be somewhat inferior to a Hartmann sensor measurement.

Reconstruction error covariance  matrices are developed for both SIOPC sensing and curvature  sensing.
Covariance matrices of the reconstruction error for both sensing methods are developed. For the case of
square arrays analytic expressions are given for the reconstructed wavefront variance. It is shown that these
variances are determined from the eigenvalues  of the Laplacian operator discretized by a 5–point scheme
over the array. Because these eigenvalues  are known for the square geometry, the variances can be simply
calculated and comparisons can be made between curvature and slope sensing performance. The results
comparing these sensing methods are somewhat contrary to those previously reported [11], [13], [14]. It was
observed in numerical studies that although the Hartmann sensor  estimation error was superior to curvature
sensor estimation error, curvature sensing compared more favorably as the number of sensors increused  as
opposed to decreased, as has been reported in these references. This phenomenon is explained in terms of
the wrm-ucy (in the sense that the l.aplacian  is a second order measurement while the gradient is a first
order measurement ) of the two sensing methods, and an asymptotic expression is given for the estimation
variance for both schemes.

1, Nonlinoar  Geometric Analysis. Consider the diagram below, Here P represents a fixed plane
transverse to the direction of propagation, and P+ are parallel planes displaced a distance *E from P. The
function w represents the wave front error function, the deviation of the wave front from being a plane wa~e .
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Figure 1.1. Geometric Intensity Propagation

I propagating in the z– direction. Let 10(Z, y) denote the intensity of the signal at a point (z, y) e P.
Rom  geometric optics,, the intensity 14 at a point (z*,  y+ ) E Pi displaced a distance +6 along the normal
to the wavefront surface is given by .

I (1.1)

where }1 and K are the mean and Gaussian curvatures of the surface, respectively,

W=%,  -  [%,12H= ‘w “ K= 7_..—} (1.2) ‘

I Ilcrc Au) denotes the Laplacian,  Aw = w=Z + WVV. Expression (1.1 ) can be deduced from the geometric
intensity propagation results in [2] together with the classical formulas for mean and Gauasian curvature

given in [8]. Define the normalized difference Q as

I Q =
1+ – I .
1+ + I .

Now, 1+ – 1. is easily computed to be

1+ -1. = 10{
1 1

1- 2cH + E2K – }– i+ 2cH + t2K
410cH

=  1 _4c2H2+2c2K+c4~”

Similarly we find that

1+ +1.=
210(1  + t2K)

1 – 4c2HZ + 26ZK + ~4Kz -
(1.5)

Hcncc,

Q = 2’)31 + C2K

(1.3)

(1 .4)

(l.6)-

Equation (1.1) holds so long as 1 +2cH  +C2K <0. (This condition essentially precludes caustics.) Thus,
the expression for Q above is valid under the same condition. Note that a~ e ~ O, Q/c’4 2H. And since
l+ +1. = 210+ 0(c2), it follows that

hnmo
l,– I_~=2f1

2C 10 “
(1.7)

But
I+ – l_

hJrj Zc = VI. ?4,
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where

‘ =  ‘-i
is the unit normal to the wavefront surface. Thus after imposing the paraxial assumption

Igl)l;l <<1,

wc obtain
81
~ = VI, Vw + 21QH.

And since the paraxial  assumption also implies }1 % Aw/2, the transport equation

81
~ == VI . Vw + IoAw. ( 1 . 8 )

is obtained. The transport equation above is also valid under paraxial  physical optics assumptions [17].
The sensor signal Q is typically modeled not by (1.6) but by the transport equation (1.8)} and the

validity of the model requires a “small” displacement between the planes where the intensity measurements ‘
arc taken. It will be seen that instrument sensitivity requires a “large” displacement between these planes
This has two efIects. First, the nordinearitics  become more significant and the transport model (1.8) looses
validity. And second, the role of diffraction becomes more dominant in the actual instrumentation setup. .
Here wc will usc (1.6) as the departure point for the subsequent analysis. The analysis will begin from a
geometric optics perspective with the nonlincarities  described above, and then noise and diffraction effects
will bc included. We will proceed here by analyzing the Roddicr set–up [10]. The model for this approach
is shown below in Figure 3.2.

(XQIYJ

P
Object Plane

W(x , y)

(x, y)

I (Objet

Figure 1.2. Geometric Intensity Propc)gation  in Instrument

Here F denotes the focal plane, F+ is the image plane associated
an “image” plane associated with an object plane O’. The planes F.
the focal  plane F. Let (z, y) be a point in the pupil plane P and let n
wavefrdnt  in the direction of propagation,

‘= ‘?=%
Let (xo, W) denote the point in the plane O that contains the light

of (ZQ, VQ) arc

v
Plane

with the object plane O, and F- is
and F+ are both a distance 1 from
denote the normal derivative to the

ray through (x, ~). The coordinates
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Let p+ denote the distance between the points (cco, yo) E O and (z, ~) E 1’:

Then using geometric optics [Born], the intensity at (ZO,  vo)  is

(1.9)

where }]W and KW are the mean and Gaussian curvatures of the wavcfront,  respectively, and l(z1 ~) is the
intensity at (z, ~). Next let (Z+, y+ ) denote the Gaussian image of (ZO,  IJO).  Then

(~+ , Y+)= (–~~/f  - ( f +  w., –lY/j - (j+ W+/). (1.10)

Also, the intensity at (z+, y+. ) is .@’vcn by

I(X, y)
=  

( + ) 2 { ] +  *Aw -t ~Y(WzzWVY  - [Wz,]z)} “

(1.11)

The cxprc.ssion  above describes the intensity in the image plane F+. predicted by geometric optics. Next we
will  derive the intensity in the plane F– under the same approximations.

Note that the wavcfront  emerging from the entrance pupil is given by

X2 -t- Y2
ti(x, y) = W(z, ~) + ——.

2 j
(1.12)

‘Ilacing the ray through (z, y) to the plane F_, we find that it picrccs  this plane at (z-, y- ),

(x-,  Y-) =  (x - ( j  -  WL, y -  (j - -  &q/)

= (lZ/j  - (j- l)WZ, ly/j  - (j - J)wv).
(1.13)

Consequently, the intensity at (z.., y- ) is given by.

l_(L, y_)=
I(Z, y)

1 – 2p_ HG +:p: KG ‘
(1.14)

where p- = (j – 1) ~1 + ti~ + ti~,  and H~ and Kti are the mean and Gaussian curvatures of the wavcfront

ti. But now note that

1
‘I+ti:+ti; {(%Z +  I/.f)(wv, + I/f)  - [%,]2}

1
‘l+ti:+ti; {[wzzwvv - [w.,]’]+ l)j2 + Aw/f}.

,,,
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Hence,

Thus we may compute the normalized intensity difference as

~{-2Aw + j[UJZZWVVl+(z+, y+)-”]- (z-, y_) -  [%121}
~+(~+,Y+  ) + ~-(~-,V-) = 2 + 2jAw + $[(f + 1)2 + (~ – t)2][wZzwyY – [wq]2] ‘

Let t = j2/1, and assume 1<< j. Then the expression above can be written as
‘. ~+ (z+, y+ ) – ~- (a , y- ) = -tAw + ~t2[W=zWYv  – [wzv]2]/f

‘1.t(z+,  v+)+~-(~-!v-) 1 + ltAw/  j + t2[wzrwuv  – [WZV]2] “

For the scale and type of aberrations of intercit  for the Keck telescope application we will typically have

lt2[wzzwv, - [wzv]2]l = ltAw[; / / j < <  1 0- 2.

Hence wc have approximately
~+(Z~,~f)–~-(Z-,y_) ~ –tAw
l+(z+, y+)+ J_(z_,  y_) 1 + t2Kw

(1.16)

Note first that even if intensity measurements are taken along the normal to the wavefront, a nonlinearity
involving the Gaussian curvature KW of the wavefront is encountered. Wrthermore,  unless Vw = O, an
additional nonlinearity emerges since (z-, y_) #- (xi , y+ ). IIowever, this latter error can be shown to be
negligible [7]. “,

2. Noise Effects, Assume a sensor integration time of AT seconds, and let A denote the area of the
detector element, in the planes F_ and F+ . The number of photons captured by these detectors over the
period AT is modeled as independent Poisson processes N+

The mean signal intensities in the two planes are then

N&_—
~% – A T A .

Let 10 = (1+ +1. )/2, and define the random variable ~ by
~ N. – N_

and N_ with means N+ and N–, respectively.

. .

(2.1)s  = 210ATA  ‘

Then S is an estimate of the normalized intensity difference with mean

1+ - I_
m = ]+ + ~_ ~ (2.2)

and variance (using N+ are Poisson) . .

E[(s -  E($)2] =  17({N+  -  N~+;(~_  -  ‘-) }2 ) ”

= (N+ ; N_)2
E{(N+ – fi+)2  + (N- - fi_)2 + 2(N+ – ~~)(N_  – N_)}

(2.3)

=  (N+ : N-)2  [N+ +  ‘ -]

1
‘N++ N-”

. .
.,
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Write r#J for the nonlinear terms in (1,16). Observe that

E(@  = tAw  + #J; ~ x
t3AwKW
1 + t2Kw

and consequent] y

Now define the random variable q = ~/t -

Aw == E(g/t)  + @/t.

E(~/i?).  The measured signal derived from (2.1) is

y = 3/t.

Thus wc can write
y== E(@) + [~/t - E(~/t)]

=Aw+&/t+q,

tiAw -
t2AwKw
1 +t2Kw  “q

(2.4)

with E(q) = O and E(q2) = l/t2(~~ + ~- ). IIence the balance that must be maintained is to keep the noise
level small  by choosing t to be as large as possible, while keeping the nonlinearities  at bay with t sufficiently
small.

3. Diffraction Effects. Now we will move on to’ how diffraction affects the curvature measurement.
Recall that the impulse response h+(z) between the object plane O and image plane F+ is computed as the
response at z in the image coordinates to a point source located at the origin in the object plane [4]. The
point source gives rise to a diverging spherical wave at the entrance pupil.  Diffraction effects in the planes
F+ will be modeled in this fashion.

Again let I(z, y) denote the intensity in the entrance pupil. The complex amplitude U+ in the object
plane Oat the point (zO, W) is given as (cf (1.9))

u’ (X13,1KI) = /_e4+(’o.vo), (3.1)

where l(zo,  yo) is given by (1 .9) and ~~ is the phase calculated from the phase at (z, y) using the distance
function p+. With the assumption that the intensity is constant in the entrance pupil, 1(x, y) = l., we get
upon retaining the first order terms in the binomial expansion of (1 .9)

U+ ( zo , yo) = fi{l -p+ H - p; K/2}e4+. (3.2)

“The amplitude in F+ is obtained by convolving the complex amplitude obtained by the geometric optics
prediction U+ (i, y) = fUy (- fz/1,  Jy/1), with the impulse response to obtain

UF+ (Z, ~) =
/

,h+ (z – z’, y - y’)u+(z’, y’)dz’dy’, (3.3)
x+

where X+ is the support of U+. (This is the set where U+ is nonzero.  In this way we will be able to account
for obscurations.) The approximation made here is the use of geometric optics propagation between the
planes O and P. ,,

Diffraction effects in the plane F. can be computed in a similar manner. To see this observe that the
impulse response h+ can be interpreted as the response to a diverging spherical wave in the entrance pupil
with a radius of curvature given by the distance & from the point source to the pupil. Suppose instead we
compute the response of a converging spherical wave in the entrance pupil. This converging spherical wave
can bc thought of as being produced by a point source in the virtual object plane O’ located a distance &
from the pupil plane satisfying the lens condition

(3.4)
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This interpretation gives rise to the impulse response h- computed in exactly the same manner as h+ (see
[3, 8]), with the exception that & is a negative quantity because 1>0 above.

Using the same approximations in computing the diffraction effects in the plane F+, the complex am-
plitude in F’_ is then computed by geometrically propagating the wavefront W(Z, y) to the object plane O’,
and convolving with the impulse response h_,

JuF_ (~, ~) = ~_ h _  (z - z’, v - y’)U- (z, y)dz’dy’, (3.5)

where U- (z, y) is the amplitude predicted by geometric optics

u-- (z, y)= +u-.(-fz/l,  fv/J) and U - (Xo, yo) = &{l -t p_H - plK/2}e@-,

and X– is the support of U_.
Writing the integrals in (3.3) and (3.5) as the convolutions h+ * U+ and h_ * U_, respectively, the

intensities in F+ are then [h+ *U+ 12, and the curvature signal Q, including the effects of difhaction,  is given

Ih+ * U+12  - lh_  * U-lz
‘ =  [h+*U+lZ-lh-*U-lz

(3,6)

Before carrying these computations forward, we will make some simplifying assumptions and introduce
some useful notation. First, with the assumption 1<< J, we may asume h+ x h_ and write h+ = h_ = h.
This assumption also implies that p+ s p_, and we will accordingly write p+ = p_ = t = /2/1. Another
@umption  that wc shall make is that the support of the impulse response h is much smaller than the quantity
Tel/j where r. denotes the atmosphere coherence length. Taking D to denote the telescope diameter, and A
as the operating wavelength, this assumption is equivalent to requiring

(3.7)

As shown below, this assumption allows us to ignore the phase terms @+ in the computations of the intensities.
First wc introduce the functions a, b defined as

f ~[] - t2K],  b  =  @iH,a=—
1

(3.8)

so that
U+ = [a T b]e+’ . (3.9)

The intensity at a point u E F+ can now be expressed as

l(h * U+)(U)12 = ~ ML - v)[a(~) - b(u)]e++ ‘“)dv /’+ L(7.4 – v’) [ii(d)  – G(d)]e-@+ (V’)dv’
+

/ ./

(3.10)
x ed+ (v)e-@+ (v) h(u – v)[a(v)  – b(v)]dv fi(u – V’)[a(v’)  – G(v’)](fv’,

F+ F+

where the overbar denotes complex conjugation. The phase terms are seen to cancel and the intensity at v
is independent of the phase. The same result holds for Ih * U_ 12.

If in addition the pupil function is radially symmetric, h becomes real, and we can ignore taking complex
ckmjugates above. We will make this assumption in what follows. (This assumption simplifies the notation,
but has little effect on the analysis.)

Now we introduce the sets

Xl= X+n X_, X2 =X+-X-, X3=X-,X+. (3.11)

8
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Let x denote the characteristic function of a set, i.e., x(S)(Z) = 1 if z E S, and zero otherwise. For i = 1,2,3
wc k% ai(u) =  U p,  a n d  bi(ti) = b(u)x(~i)(ti).  With this notation and the various approximations
made, (3.6) becomes

Q=;, (3.12)

where
N = 4(h * a~)(h * lq) + 2[h. * (al + tq)][h * (a~ + lq)] + [h * (ci~ + b~)]z

- 2[h * (al - b~)][h * (rq - b~)] – [h* (as – b~)]z,

and
D = 2[h* 01]2 + 2[h*bl]2’+ [h* (az + b2)]2 + [h* ((U - b3)]2

+2[h* (al + bl)][h*  (a2, +tq?)] +2[h* (a] – bl)][h* (a3 - b3)].

For points far removed from the pupil edges or obscurations (i,e, well within the interior of Xl ), we can
ignore the contribution to the signal made by the sets X2 and X3 and obtain

2(h * a])(h  * tq)
‘N(h*a1)2+-(h*b~”

Recalling the definitions of al and bl (cf (3.8) and (3.11))), and ignoring higher order terms,

2t(h * l)(h* H)
‘= (h*l)2+  (h*l)(h*t’K)

th * Au)
‘(h*l)+(h*t2K)”

Finally, introducing the notation

~=;’

so that ~~ * 1 = 1, we obtain the result (for points removed from edges and obscuration)

Q=

tjL * Au)
l+t21t*K”

(3.13)

(3.14)

(3.15)

( 3 . 1 6 )

For these points it is seen that the curvature signal is characterized by &mvolving  the individual terms of
the geometric model with the point spread function of the instrument. For systems with large aperture, fi is
an approximate 6 function, and wc recover the geometric model.

Modifying the sensor model to include diffraction effects is straightforward. For points in the interior of
Xl, the estimator is not estimating the Laplacian of the wavefront, Aw, but the convolution of the Laplacian
with the normalized point spread function of the instrument. Thus the model becomes

where * again denotes convolution, and @ and q are the nonlinear and noise temis from (2.4). Closer to the
boundaries of the obscurations and pupil edges the full quotient model (3.12) must be uwd.

An Example. Thus far we have developed how intensity rneasuremcnts  lead to estimates of wavefront
curvature and radial tilt. We will now consider some examples using low order Zernike aberrations.

The Zcrnike  polynomial for tilt is

W(z, y) = ; (or  z = ~co.90 in polar coordinates); R=pupil radius.

Hence,
Aw = 0,

,,
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and
Wso

<Vw, n>=—.
,R

The zero Laplacian  of tilt is captured by the intensity signal in Figures 3,1a-3.l c. In each of these figures
we chose the displacement 1 from focus to be .05m, and the focal length of the system as f=150r,n. Thus
t = 4.5x 105 m. Figure 3.la contains the Keck prescription without central obscuration from the secondary
mirror. The magnitude of the signal increases to unity at the edge of the pupil. Figures 3.1 b-3.1 c contain
the signal with obscuration. There is more ringing to the signal in these cws because of the diffraction
contribution of the secondary mirror. The signal in the center for Figures 3.lb-3.lc  is due entirely to
diffraction. Because the aberration consists of an z– axis tilt, the terms containing the Laplacian and
Gaussiari  curvature in (3.12) disappear. Along the y- axis we would expect the signal to diminish in the
obscured region  because the terms in the numerator cancel. This is precisely the case as can be observed in
Figure 3.Ic.

10
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The Zernikc polynomial for defocus is given by

W(Z, y) = 2(=)2+ 2(3)2  – 1; R=pupil radius

Thus with a coefficient of e multiplying the defocus term, the resulting Laplacian and radial tilt are

and
4(

c <Vw, n>=—,
R

respcctivel  y.
The geometric curvature signal for defocus is given by

1+ (z, y) -1- (T, ~) --?[%1=—— .
1+ (z, y) + I_(x,  y) 1+(92*

The nonlinearity introduced by the Gaussian curvature term in the denominator is seen in the simulations by
comparing intensities from the normalized intensity maps as the image planes are moved closer to focus (Figs.
3.2a-3 .2c). The intensities increk sublinearly because of this term. Table 3.1 summarizes the value of the
curvature signal for these cases using the linear model (1.8), nonlinear model (1.6), and simulated intensities
(including diffraction effects.) It is seen that as 1 decreases the linear model becomes quite inaccurate, while
the nonlinear model retains good fidelity with the simulated intensities.

‘lkblc  3.1 Sublinearity  of  curvature moasurcmcnts

1 25mm 50mm

Linear .29 .58
Geometric .28 . 5 3
Simulation .28 .54

100mm

1,16
.86
.87 .
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Figure 3.2a. Defocus Laplacian 1 = .1 mm
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Figure 3.2b.  Defocus Laplacian 1 = .05 mm
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4. Radial Dcrivat ive from Intensity Measurements. The problem of wavefront  recmw.truction
from intensity mcasuremcmts  requires a measurement of the boundary slope. Here wc will briefly describe
how the intensity distribution can provide information regarding the normal derivative of the wavefront on
the boundary. This will be done from a geometrical optics perspective, however diffraction effects can be
accommodated via (3.1 2). (A more detailed analysis of boundary slope determination can bc found in [7].)

Let F’ denote the pupil, and P denote the pupil including its boundary, dP. Given a point (z, y) E ~,
with wavefront (x, ~, w (x, y)), rays are propagated to the object planes O and O’ by the transformations

a w  a wT4.(z,~)  :+ (z, ~) +t(— — ) .
ax’ ag

Introducing unit vectors in the radial and tangential directions, u, and u,, respcctivcly,  the transformations
above are written as

Ti(z,  y) :-+ (x, y)+t < VW, W > U.+ < ;VW, U, >UT,

where R denotes the aperture radius. Ftom this we see that diffe}cntiall  y the transformations T+ consist of
a rotation, via w, and a radial translation, via u,.  To compute the effect on the boundaries T+ (8P) fix f?o

and define’ ‘
di = 00+  i? < VW(R,OO), W >

Now observe that to first order
T4 (R,&) = (Rj ,~o),

where
Ri = *i!< vw(@), UR(e~ ) >

So to first order
R+ – R. = 2t < vw(~o),  UR(OO) >.

In the image planes, F+ and F-, the radii are magnified by the factor l/j so that

l/f(R+ - R_) = 2j < Vw(R,OO), n >. (4.1)

To summarize, let S4 =1/ jTi.  Then the radial displacement of the boundaries of S+ (8P)  and S-(aP)
at a point (R, 0) is proportional to the wavefront slope at the point; and further the proportionality constant .

14



is the displacement b,etwecn  the planes P+ and P_. And in the image  planes F’d this proportionality constant
bccomcs  2tt/j  = 2j. Note that the displacement depends only on the focal length and not on the position
of the image planes.

The determination of radial slope by intensity measurements of the pupil displacements at the boundary
is not a direct process. Next we will  discuss how this is done in the Roddier scheme.

The Roddicr  scheme for estimating the radial tilt < Vw, n > is based on the observation that the
curvature signal (1+ – 1- )/(It + I_ ) is Al for points in the symmetric difference of the sets S+ (P): Points
in (S+ (F’) – S– (P)) U (S_(P) - S+ (P)), i.e. where there is no overlap, and is strictly less than one where
there is overlap. The distance where there is no overlap is proportional to the wavefront tilt on the boundary
as we saw above. In Fig. 3,3 the region G. is written as the union of two subregions, GO and Cl. Go is
bounded by small arcs of S+ (~P) and S_ (8P),  and thus the width of Go is proportional to < Vw, n >.’
Since it is not a priori known what the width actually is, a parameter p is chosen as an upper bound. p
is the width of the region G. < Vw, n > is estimated by averaging the observed curvature signal over the
entire region 6’. Obtaining an accurate estimate of < Vw, n > with this procedure relies on a small  value of
the (curvature) signal in G]. (This can bc enforced by choosing large 1; however this increases the size of the
imaged pupil, and thereby reduces the sensitivity of the tilt measurement since the relative displacement of

the pupil boundary is independent of 1.)

2f @w, n)
%= nonovcrlapping

boundaries

G= overlapping
boundaries

Figure 4.1. Normal Derivative Determination

Now let 8-W denote the estimate of < Vw, n > obtained by averaging the normalized intensity signal
over G:

8% =
1

/

1+ -- I..—-—
2 j; RAO c l+ + 1..

1

J

I+ – 1-=— —.
21RA0 ~ I+ i-I_

l’artitioning  G into the regions indicated in the figure above, G =: Go U G], and performing the integrations,
wc obtain

J i+ – I_ <Vw, n>
— —  z 2jRAOl— + 6@l/j)(j2/l)AOAw,

G li +- l– s

where b~ = cr – 2j < Vw, rL >; Hence,

&.< VW,., -&#. (4.2)

Thus this estimate of the radial slope of the wavefront suffers nonlinearities  when either the a priori width
of the boundary signal is underestimated or over estimated. Roddier, et al [10] discuss this nonlinearity
when the edge is underestimated. For wavefront components with zero I.aplacian  there is no error by
overestimating the width of the edge. However, nonlinearitics  do appear for signals with nonzero Laplacians.
This was observed in [1 O] when a small nonlinearity appeared for defocus even though the sensor was not
in saturation. The explanation for this follows from (4.2) where the Lapplacian term is nonzero for defocus,
but vanishes for tilt and astigmatism.

The noise characteristics of the radial slope estimate obtained in this manner are addressed in [7]. In
summary it is shown that the method has to trade the resolution by which. it can ascertain the boundary
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displacement with read and dark current noise, and ultimately these noise characteristics are inferior to those
of a Hartmann  sensor.

5. Wavefront Reconstruction. The problem of wavefront reconstruction is to estimate the wavefront
across” an aperture from sampled values. The sampled values are obtained from measurement devices such as
a Hartmann  sensor, a shearing interferometer, or the curvature sensor as discussed in the previous section.
It is important to note that these sensors do not provide direct information of the wavefront, but only first
or second derivative information through either the slope or curvature measurement.

The general setup of the recxmstruction  problem is fairly simple. Let an aperture be defined by a region
D in a plane with boundary i3D. We will be taking D to be a square in most of the analysis to obtain some
fairly specific results, but for now we will let D be quite general. Let w(z), z E D denote the wavefront
surface. The reconstruction problem from slope measurements is to determine W(Z), z E D given a sample
of the gradient of w, V~(~i),  i = 1, . . . . n. The problem for curvature sensing is to estimate W(Z) given the
samples Aw(zf), i = 1, . . . . n. For curvature sensihg  it is also n6cessary  to have normal gradient information
on the boundary to perform wavefront reconstruction.

For both of these reconstruction problems any constant function can be added to a solution and still
solve the system, For the purpose of error analysis it will be shown that the normalizing condition on the
reconstructed wave front. @,,.

E ‘12ij =  O (5.1)
~ J

leads to the minimum variance solution. This solution is also recognized as the “zero piston” solution, and
has fur~hcr relevance to the wavcfront  correction problem [7].

For more detailed anal ysis,  the reconstruction problem will be restricted to a square aperture with
regular measurements. We will assume that the square is d x d units and there arc (A’+ 1)2 regularly spaced
nodes. We let h denote the mesh width, so that h = d/N. We begin with an analysis of slope measurements
in this configuration. At each mesh point indexed (i, j) c D we assume the noisy vector slope measurement

[$~j ‘~j]  =  Vw(zi,  Yj) +  %j ( 5 . 2 )

where
W  =  Mj ?&l J (5.3)

with qij zero mean for every i and j, and with constant covariance  E(q~qij  ) = U2,12X2.  (The independence
of the x and ~ slope measurements are discussed in [5].)

The gradient Vw(zi,  yj) is approximated at mesh points by the difference operator Ah,

(Ahu)(ij)  = (Wj+ ‘h- ‘ij ‘i+ lJh- ‘j )

To develop the minimum variance estimator we write the difference operator above as

[11 A’Ah=~ Av
where

(Az~)(ij)  = uij+ 1- Uij,

and
(AvW)(ij)  =  ui+lj – uij.

Note that
A’ : @iel,~+.lR~+l ~ @icl,~+lRN

has the (rectangular) block diagonal representation AZ =diag(A~)  with A: : RN+l d RN,

“=IR!.-l:l
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l’h~ A’T : oi~l,~+ll?~  ~ ~i=l,~+ Ill ‘+1 is also block diagonal with tjocks  A~~. Hence Az~Az  is block,
diagonal, with tridiagonal  blocks Af~A~,

1 –1

.[ ‘1

–1 2 –1
&T& Z “. “. “.. . .

0 . . . -1 2 –1
o . . . 0 –1 1

A similar, development follows for computing (A~)TAU.  Here we note that

–llO... O
o –1 1 . . . 0
. .. . “ . “ .. .

00...–11 1

where 1 denotes the (IV + 1 ) x (IV + 1 ) identity matrix. It follows then that

1 –1
-I 21 -I

“, ..”.. . .

1 0 . . . – I ’21 -1
0 . . . 0 –I I

Since AT’A  = A’~A. + A@A,  we find that A7A is block tridiagonal

330 –I

I 1

–1 B –1
A TA = “. . . “.. . .

0 . . . –1 B –I
o . . . 0 –1 13~

where B. has the tridiagonal  form

2

[ 1
–1–1 3 –1

130 = “. “. “.. . .
0 . . . –1 3 –1
o . . . 0 -1 2

and B = I+ 13..
The reconstruction problem for slope sensing can be posed M the following minimum variance problem:

m& E(lti – Wlz) (5.6a).

subject to the constraints
E(O) = W ,  til = Ky, y = Ahw + q, (5.6b)

with E(q) = O, and E(qTq) = Q, where Ah is defined in (5.5), y is the measurement vector in (5.2), and q
is the noise vector from (5.3). If A has full rank the solution to this problem yields the best linear unbiased
estimator (BLUE) [25] from the measurements y, and is given as

d = (A~Q,–l  Ah)-lA:Q-  ly, (5.7a)

17



with resulting covariance  matrix

E[(ti - w)(ti  – w)~]  = (A: Q-”l A~)-l  . (5.7b)

However, it is evident that Ahasa one dimensional null space spanned bythesingle  vectorv=  [l,.. I]T
corresponding to a piston mode. We could circumvent this difficult by formulating an equivalent (weighted)
least squares problem and derive the estimate via a pseudoinverse sol~tion.  But fo~ deriving variance
estimates the following approach will be more illuminating. Let Q : R(N+  1, -1 4 R(~~ 1, be any orthogonal
martix (VTW = 1) such that the range of V is the orthogonal complement, call it U, of the subspace spanned
by v. We now repose the problem as finding the linear minumum variance estimate in the subspace U:

min E(lti – ?.012); y = Ahw + q where w E U, (5.8)ti

‘l’his is equivalent to the problem “

‘l’his reposed problem has the interpretation that we are seeking solutions to the problem where the “mean”
wavefront is zero, i.e. has zero piston. We will  see a little later that the choice V leads in a certain sense to
the minimum variance wave~ront  error solution.

The solution to (5.9) above is given by

6 = w, where ti = [VTA~Q–lAhV]-lVTAhQ–ly, (5.10)

since W7’AfQ–  1 Ah~ is now invertible. The variance of the estimate is

~i(lW –  tilz) = t~{*[~TA:Q-lAh~]-’l*T} = tr{WTWIV~A~Q-lAhW]  -l} = i!r{[~~A~Q-lAhW]-l}.
(5.11)

Observe that since R(W) = A’(A)l , tr{[W~A7Q–l AW]–1}  is the sum of the reciprocals of the nonzero
eigcnvalucs  of A~Q–  1 A. These results arc formally stated in the theorem below.

Thoorcm  5.1. Let Q denote the variance of the noise term in (5.8), Q = E(qqT), and let Ah be the
difference operator defined in (5.4). ‘l’hen the minimum variance ~lution  is givqn  in (5.10) above, with
variance

E(1w – ?212) = tr{[VtA~Q-  lAh~]-l}

If Q is a scalar matrix, i.e., Q = 021 then the variance can bc expressed as

E(1u – ii]2)  = a2h2tr{[WtA~AiU]-  1}

z
1

= 02h2
x’

where the ~i’s are the nonzero eigenvalues  of ATA,///

Wc will next see how a very analogous situation develops for curvature sensing when using a 5-point
scheme discretization of the Lap]acian  [15]. A point to keep in mind while we develop the result below is that
it is tied to this particular approximation of the Laplacian,  and other options for discretization  are available
for curvature sensing.

Curvature sensing produces the following sampled Laplacian and radial derivative signal:

&)ij + q;;t = ylj; VW~j . n+- q~~w’ ~ y~~”pe

Recall here that the noise q has two components; an interior component, qint ~ociated  with the cur~ture

signal, and a boundary component qs~~e associated with the measurement of the normal derivative of the

1“8



wave front at the boundary. Discretization  via the &point  scheme leads to the difference equation in the

interior of D,
4W~j  –  W~j.~  –  W~j~~  -  W;-lj –  ‘~ =

~2 Yij + qij J (5.1?)

at interior points not adjacent to a boundary, and at points adjacent to the boundary either:

2W;j  – Wij+ 1 – wi-t 1 j
h2 ‘Yij+~j, (5.13)

for corner points, and for points not at the corner:

3Wij -  Wij-]  –  wij+ 1- ‘Wi+ lj
)L2

-  ‘Yij+qij. (5.14)

In the adjacent cases the signal is a combination of the curvature signal and slope signal.’ For example, for
points adjacent to the “north” boundary (i= 2)

810pe _
Y– ‘i- y ‘ij + rf’”pe.

Ilencc,

wi-  lj z Wij + h[~”lOP’ – qs~~e],

and conscqucntl  y the right sides of (5.13- 5.14) contain the tcrrrw &l@e/h and qS’We/h.

Observe now that this discretized system has the form

A;&w + q = y ( 5 . 1 5 )

with Ah defined as in (5.5). After introducing the normalizing matrix W for the estimation problem (5.15)
above, we obtain the curvature sensing reconstruction analoguc  to Theorcm 5.1.

Theorem 5.2. Let Q denote the variance of the noise in (5.12-5.14) and let Ah be the difference
operator defined in (5.5). Then the minimum variance solution to (5.15) is

ti = ~[q7’A:Ahq]-]  [WT~-  lqI]-1Q7Q–ly,

with variance

E(1w – ti/2) = t~{[.~7A;’AhQ-]  A: Ah~]-1}.
If Q is a scalar matrix, i.e., Q = 021 then

ti == W(@A~AhQf)-  l@’y,

and the variance can be expressed as

,
1

= u2h4  ~ ~,
i

where the Ai’s are the nonzero eigenvalues  of ATA.///

There arc two distinctions between the curvature and slope sensing variance estimates. The first is the
factor of h4 that appears in the curvature sensor reconstruction error, versus the factor of h2 in the slope
sensing reconstruction error. The second difference is that the reconstruction in curvature reconstruction
involves the sum over the square of the reciprocals of the eigenvalum  of ATA, as opposed to the reciprocals
of the eigenvalues  for slope sensing. Thus we. see immcdiatel  y that the trade between curvature and slope

,,
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sensing is governed by both the growth of the reciprocals of the eigenvalues  of the Laplacian an~ the mesh
size. On square domains these eigenvalues  can be computed analytically;

Proposition 5.3. The eigenvalucs  of A~A  are given by

Aij  =  4  –  2WSA –  2COSA-
N+l N+l

i,j=O,. ... N.
,,

Proof. Recall that A~A = Az~Az + A~~A~ (see development following (5.5)), Consider the matrix

1 – 1

-1 2 –1
“. “. “.. . .

0 . . . –1 2 –1
o . . . 0 -1 1 11

and let {Ai}i, {ui }i denote the sets of cigcnvalues  and eigenvectors  of this matrix, respectively. I)enote  the
n T where n = N + 1. Now construct theccirnponent.s  of the vector ~i by superscript, i.e. ~i = [u:, . . . . Ui ]

n 2 
X 1 vector q~k,

[1
U: UkU:uk

qik= . .

U@k

Observe that

[1
U: Kuk

AzTAzqik  = : .

U; Kuk

Hence, since Kuk = ~kuk, it follows that
AZTA’ = ~kgik.

(5.16)

Observe next that

11”
u: v - U;v

_u&–l  “
AvTAvqik  = , V + ZU~V _ U~V . . .

n– 1—Ui v + u~v

Ilut since Ku i = Aiui$  it follows that
AYTAVqik = ~iqik. (5.17)

I’lom (5.16) and (5.17) we obtain A~A = (~i + ~k)~ik.
Now K is recognized as tbe stiffness matrix obtained from n unit masses serially coupled by unit stifiness

springs unsupported at the ends. The eigenvalues  of K are given by [1]

Ai = 2 – 2COS&.3 i = 0, . ..t N.

It is straightforward to verify that the vectors {qlk}  are pairwise orthogonal since the set {u i} is an or-
thornormal set by virtue of the symmetry of K. Hence {qik}  constitute a complete set of eigenvectors  for
ATA, and {Ji + ~k} form a complete set of eigenvalucs  of ATA.///

We now return to the discussion of the role of the matrix V in the minimum variance solution. There
arc of course other ways of, normalizing the problem to obtain unique solutions. For example we could find
all solutions in the subspace of solutions that grounds a particular node (i.e., we require uiO jO = 0. for some
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index iojo.)  ‘l’his corresponds to selecting another matrix, say I’ : R(N+  1)2-1 ~ R(N+ 1):, such that AI’
has full rank. The pertinent observation regarding any normalizing matrix 1’ such that I’ti # O is that the

associated error variance tr{r[1’7Ah  Q- ] AJ]’1  r~} has the property that

tr{r[r~A~Q-lAhr]-lr~}  z tr{[V~AfQ-lA~W]  -l}, (5.18)

i.e., the variance obtained from the normalization V is a minimum. (The analogous result holds for curvature
sensing reconstruction as well. ) This result can be deduced from the minimax property [3] of the eigenvalues
of a symmetric matrix in the following way: Let I’ = OR be a QR factorization of I’, i.e. O is an orthogonal
matrix and R is an invertible triangular matrix. Then

tr{r[I’~AfQ-lAhI’]-  lr~} =  tr{OR[R2’0~AfQ-  lAhOR]-l  RTOT}

=i?r{OIO?A~Q-l  AhO]-lOT} (5.19)

= tr{[OTA~Q-  lAhO]-l}.

Writing tir to denote the estimate ‘from the normalization by I’, we see from (5.19) above that the variance
of this estimate is equal to the sum of the reciprocals of the eigenvalues  of OTAfQ–l AhO. Now the
eigenvalucs  of VTATQ– 1 AW are precisely the nonzero eigenvalues of ATQ– 1 A, say {J2, . . . . AN }. By the
minimax property, the eigenvalues  of OTA~Q–llAAO,  A;, . .. A~__l  satisfy AL ~ ~k~ 1, k = 1, .,, JV -1. Thus
(5.18) follows.

The variances obtained by different normalizations actually have a simple relationship. Ilccall  that the
matrix W ensures that the associated estimate tiW has the “zero piston” property

<tlql,  v>=o, where v = [1 . . .]]T,

i.e.,

where tiij  denotes the components of tiv.  Although (5.18) holds for any normalization, it can be shown that

E{ltir - W1112 – (< ‘D, tir – Wr >)2} = E(lti~ – W*12),

where tiW denotes the estimate from using the normalization V [7], What this result says then is that the
variance from any normalization of the problem is equal to the variance of any other normalization afler the
error due to the piston component is removed.

6. Comparison of Curvature Sensing and Hartmann Sensing Reconstruction Error. Theo-
rems 5.1 and 5.2 together with Proposition 5.3 allow us to make. comparisons between reconstruction error
for curvature and slope sensing methods. (For slope sensing we will assume a Ilartmann  array.) In the case
of a square aperture equipped with an A’ x IV array of subapertures, the covariance  matrix X for either
curvature or Hartmann  sensing is related to the eigenvalues  { Akl }kl of AT A as given in Proposition 5.3.
Taking for example, IV= 10 and h = 1 m, for the Hartmann sensor we calculate

and for the curvature sensor
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where q~l~ denotes the variance of the Hartmann sensor measurement and O&rve denotes the variance of
the curvature sensor measurement. For the I{artmann  array where the ccntroiding  is done. by a quadcell
sensor,

311AI*~~~~~
~slope = 16@ ‘

where J is the wavelength, Is=ing is a variance correction factor given by the Yura approximation for short
exposure spot size diameter [9], [19],

#eAn,  = J1 + (h/m)’[1  - .37(7’o/h)’/3],1 r. = coherence length, h=subaperture size,

and v is the number of photons per subaperture. Using the values J = .8 x 10–6 m, h = 1 m, and TO = .3
m we get .

1.23 X 10-6
RMSalwe  =  ~ —.

And using the previous values, j = 150m, and 1 = .05m from Section 3 to characterize Omne, we obtain the
rms estimation error with curvature sensor

RMS
3.68 X 1 0-6

curve  =

&“

Hcncc,  the rms estimation error for curvature sensing for this array is approximately three times larger than
for the Hartrnann sensor.

We compared reconstruction errors for various array sizes with N = 5, 10, 20, and 40 corresponding to
mesh widths of h = 2 m, 1 m, .5 m, and .25 m, respectively. These results are contained in the table below.

~blc 6.1. Curvature vs. Slope Sensing Reconstruction

h .25 .5 1.0 2.0

Hartmann 5 . 8 4  X  1 0- 7 7.87 X 10-7 1.23x10 -6 2.13x 10-6
Curvature 9.07 x 10-’ 1.82 X 10-6 3.68x10 -6 7.60 X )0-6

These results are contrary to what has been reported in the literature regardirig  the accuracy of curvature
sensing and reconstruction ([1 O], [13], [14]). What is observed in the table above is that the curvature sensor
compares more favorably with the Hartmann sensor as the resolution increases. The trade that occurs
between the two sensing methods is that although reconstruction error from the Laplacian measurement
grows more rapidly than the reconstruction error from gradient measurements, this efiect  is mitigated by
the property that the Laplacian is a higher accuracy measurement (O(h2)  versus O(h).) These trades are
made more clear  below.

Asymptotic estimates for the estimation error can be developed using the characterization of the eigen-
values in Proposition 5.3. For large IV we have the approximation

nk
4 – 2cos—

7rl
– 2ws—

n’(k’  + 12)
N+] N+] = (N+l)2.”

Hence,

.,
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o

and

g+” (~+ 1)4 ~ :1 7 ( k2 1 +  /2)2 “
kl

Th@e sums can be approximated as

;+ $s O(N’1O,(N)),

FYom  these approximations we obtain asymptotic estimates of the surface reconstruction error for slope

sensing and curvature sensing: .

Theorem 6.1. Let d = length of a square aperture, and let Ii denote the mesh size. Then for large
d/h, the following asymptotic reconstruction error estimates are obtained for slope sensing and curvature
sensing, respectively:

RMsalopeu.loPe Mdlh),

Previous analysis of the effect of reconstruction on slope vs. curvature sensing focuses on the noise
propagation properties, and essentially fixes the mesh size h while increasing the aperture sized [10], [13],
[14]. As d increases (with h fixed) it is seen that the RMS.lOPe  grows logarithmically and RMSa.U.  grows
linearly as reported in these references. The error propagates differently, however, if wc fix the aperture size
and decrease the mesh size. Since for h < TO

and

where v again denotes the number of collcc@d  photons, wc find that

and

Thus we see that curvature ~nsing  may actually be superior to Harmann  sensing when the subaperture
diameters must be small. (Such a circumstance is envisioned for the dense segmented primary mirror of the
SELENE telescope [18].)
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